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Abstract- In this paper, the numerical solution of singular integral equations in stress concentration
problems is considered, The idea of the body force method stress field induced by a point force in
an infinite body is used as a fundamental solution. Then, the problem is formulated as an integral
equation with a singularity of the form of r- l

, In solving the integral equations, the boundary
conditions satisfied by two types of numerical procedure are examined, Then, it is found that the
unknown functions of body force densities should be approximated by the product of a polynomial
and several types of fundamental density functions, The calculation shows that this latter method
gives a smooth variation of stresses along the elliptical boundary for various geometrical and loading
conditions, In addition, this method gives rapidly converging numerical results and highly satisfied
boundary conditions along the entire boundary. if) 1997 Elsevier Science Ltd,

NOTATION

a:
b:
(x,y) :
(~, 1/) :
8:
¢:

major radius of elliptical hole
minor radius of elliptical hole
rectangular coordinate
(x,y) coordinate where point force is applied
eccetric angle of ellipse
eccetric angle of ellipse for the point (~, 1/)

I. INTRODUCTION

As a result of computer developments, various numerical methods useful for stress analysis
have been developed. Among those methods, singular integral equation method has been
applied to many crack problems (Erdogan and Gupta, 1972; Erdogan et ai., 1973; Sih,
1973; Theocaris and Ioakimidis, 1977; Boiko and Kerpenko, 1981; Erdogan, 1983a, b ;
Kaya and Erdogan, 1987; Fujimoto, 1990; Noda and Matsuo, 1991). In the analysis, a
crack is represented by a distribution of infinitesimal dislocations in a plate without a crack.
Then, the problem is reduced to singular integral equations having Cauchy-type singular
kernel. This method, however, has hardly been applied to other than the boundary of the
crack, such as hole, notch and inclusions.

On the other hand, the body force method, which was originally proposed by Nisitani
(Nisitani, 1967, 1974; Nisitani and Chen, 1987), has been applied to various stress con
centration problems. In solving the two dimensional notch problems, the body force method
uses the stress field of a point force in an infinite plate as a fundamental solution. In the
numerical solution, the concept of the fundamental density function was originally
proposed, and the unknown function of the body force density was approximated by the
products of "fundamental density functions" and "weight functions". Here, the fun
damental density function is an exact density of body force to express a single elliptical
hole exactly. The weight function is chosen to be a "step function", which takes a constant
value along each segment into which a whole boundary is discretized; each constant value
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of the step function is determined from the boundary condition at the mid-point of each
segment (Nisitani, 1967, 1974; Nisitani and Chen, 1987).

In the previous papers, the numerical solutions of the singular integral equation of the
body force method in 2D crack problems have been discussed (Noda et al., 1989, 1990,
1991, 1992, 1993; Noda and Oda, 1992). In those papers, unknown functions of the body
force densities have been approximated by using polynomials instead of the step functions.
It has been found that a new method gives the results of better accuracy with shorter CPU
time compared with the conventional body force method using the step functions.

Initially, in this paper, the singular integral equation of the body force method is
shown in the analysis of stress concentration problem. Then, the numerical solution of the
conventional body force method is discussed by applying two types of numerical procedure.
In the former method "A", the known weight functions are approximated as continuous
functions by using polynomials instead of step functions. The results show that method A
has better convergence rate than the conventional body force method; however, it is found
that this former method cannot completely satisfy the boundary condition along the
boundaries. On the other hand, in method "B", eight kinds offundamental density functions
are newly defined and applied. The results show that introducing the new fundamental
functions can satisfy the boundary conditions along the entire boundary. It is found that
this latter method yields a smooth variation of stresses along the boundary with higher
accuracy compared with other methods.

In this paper, some simple problems are taken as examples of stress concentration
problems in order to explain the numerical solutions and results. However, the numerical
method developed here can be applied to various stress concentration problems and
especially suited for elliptical boundaries; for example, arbitrarily distributed elliptical
holes (Noda and Matsuo, 1995a, b), elliptical inclusions (Noda and Matsuo, 1996a, b), and
a row of semi-elliptical notches (Noda et aI., 1996). The idea of the use of several types of
"fundamental densities" may be applied to other than the boundary of ellipse.

2. NUMERICAL SOLUTION OF SINGULAR INTEGRAL EQUATION OF THE
CONVENTIONAL BODY FORCE METHOD (METHOD A)

2.1. Numerical solution using the singular integral equation ofconventional body force method
Consider an infinite plate under uniform tension having two elliptical holes as shown

in Fig. 1. Here, an infinite plate with two elliptical holes [x = ±(d + a cos e), y = b sin eJ
subjected to tension is taken as a sample problem to explain the numerical solution. The
problem can be formulated in terms of singular integral equation by using a Green's
function: that is, the stress field at an arbitrary point (x, y) when point forces act sym
metrically on another two points (±~, 1'/) in an infinite plate. The formation is based simply
on the principle of the superposition. Here, (~, 1'/) is a point in the (x,y) coordinate system
where point forces are applied. Based on the body force method, the problem is reduced to
determining the density of body force, that is, embedded point forces in an infinite plate,
along the prospective boundary of the holes in the infinite plate without holes.

where

-(l/2){p:(e)coseo+p~(e)sineo}+t K~~'(¢,e)p~(¢)ds

+ tK~~(¢,e)p:(¢)ds= -(c;~cos2eo+c;~sin2eo)

-(l/2){ -p:(e)sineo+p~(e)coseo}+tK~;'(¢,e)p:(¢)ds

+ t K~{(¢, e)p:<¢) ds = - (a~ - c;~) sin eo cos eo (I)



Here, r denotes the boundary for an elliptical boundary and eo is the angle between the x
axis and the normal direction at the point (x,y) on the ellipse. In eqn (1), the unknown
functions are the body force densities [p~(¢), p~(¢)l distributed along the prospective
boundaries in the x, y-directions. Here, ¢ is the angle that specifies the points where
body forces are distributed. Equations (1) are the boundary conditions at the imaginary
boundary; that is, an = 0 and Tnt = O. It should be noted that the body forces lie within the
prospective cavities. The first terms of eqns (1) represent the stress due to the body force
distributed on the "minus boundary" (Nisitani, 1967). The "minus boundary" means the
imaginary boundary composed of the internal points that are an infinitesimally small
distance from the initial boundary. Taking K~~'(¢, e) for example, the notation means the
normal stress an induced at the point when the body forces with unit density in the x
direction is acting symmetrically to the y-axis along the infinitesimal arc length on the
elliptical boundary. These equations include the singular terms having the singularity of
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the form 1/{sin(0-¢)/2} (Nisitani and Chen, 1987). In this case, 0 = ¢, the integration
should be interpreted as the meaning of Cauchy's principle values.

In the conventional body force method, the unknown functions in eqns (1) P:(¢),
pj(¢) are expressed by the following equations,

dF¢ dF"
p;(¢) = ~ = dr; nA¢) = pA¢)nA¢),

* _ dF~ _ dF~ _
Py(¢) - ~ - - d~ n,.(¢) - pv(¢)ny(¢), (2)

where dF¢, dF~ are the components of the resultant of the body force in the x, y directions
acting on an infinitesimal arc length ds, respectively. Here, nx(¢), ny(¢) are the x, y
components [=(cosOo,sinOo)) of the normal unit vector, respectively, at the point (x,y).
They are expressed by the following equations.

(3)

where Px(¢), py(¢) are the body force densities of the unit projected length in the x, y
directions (Nisitani, 1967, 1974; Nisitani and Chen, 1987).

(4)

Using the expression of eqns (4), the singular integral eqns (1) become the following
equations,

- (1/2){ - pAO) +Py(O)} sin 00 cos 00 +fn K~;'(¢, O)Px(¢)bcos ¢ d¢

+fn K~{(¢,O)py(¢)asin¢d¢ = -(a:-(J~)sinOocosOo (0 ~ 0 ~ n). (5)

It should be noted that nA¢), ny(¢) are regarded as a kind of "fundamental densities"
to approximate p:(¢), p;(¢) very accurately. They are actually the exact densities of the
body forces for the problem of an isolated elliptical hole in an infinite plate under tension
(Nisitani, 1967, 1974; Nisitani and Chen, 1987). In the conventional body force method,
the elliptical boundary is divided into small segments, then the unknown weighting functions
pA¢), py(¢) have been approximated by step functions, which take a constant value along
each segment. While in method A, polynomials have been applied to approximate the
unknown functions as continuous function. Now, from the symmetry of the problem, the
following expression can be used,

M/2

pA¢) = L antn (¢) (-n/2 ~ 0 ~ n/2)
n=l

tn (¢) = cos«n/2-¢)(n-l» (1 ~ n ~ M/2)



Solution of singular integral equations

M

pA¢) = L ansn(¢) (n/2 ~ 8 ~ 3n/2)
n=M/2+1

Sn(¢) = cos((n/2-¢)(n-M/2-I» (M/2+ 1 ~ n ~ M)

M

Py(¢) = L bntn(¢)
n=L

tn(¢) = cos((n/2-¢)(n-I)).
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(6)

(7)

In preliminary studies using the conventional body force method, it has been found that
the weight function pxC¢) is discontinuous at 8 = ±n/2; therefore, as shown in eqn (6),
pi¢) is expressed individually in the two ranges - n/2 ~ 8 ~ n/2 and n/2 ~ 8 ~ 3n/2.
Using the approximation method mentioned above, we obtain the following system of
linear equations for the determination of the coefficients am bm em dn • The number of
unknown coefficients is 2M. The collocation points are set as given in eqn (8) to the
determination of the coefficients.

M

L (anA n+bnBn) = - (O'~ cos2 80 +0';' sin2 80 )
n=1

M

L (an en +bnDn) = - (a;: -O'~) sin 80 cos 80
n=l

An = -(1/2)sn(8)cos2 80 + fi:i2 K~:(¢,8)bcos¢sn(¢)d¢ (1 ~ n ~ M/2)

An = - (1/2)sn(8) cos280 +I:/2 K~:(¢, 8)bcos ¢Sn(¢) d¢ (M/2+ 1 ~ n ~ M)

En = -(1/2)tn(8)sin 2 80+ f" K~~'(¢,8)asin¢tn(¢)d¢

C = (1/2)tn(8)sin80cos80+ fi:/
2

K~r(¢,8)bcos¢tn(¢)d¢ (1 ~ n ~ M/2)

C = (1/2)tn(8) sin80 cos 80 +I:/2 K~r(¢, 8)bcos ¢tn(¢) d¢ (M/2+ 1 ~ n ~ M)

(8)

(9)

(10)

For collocation points, evenly spaced intervals of the 8L have been used in both analysis
methods A and B as shown in eqns (8) and (17). On the other hand, in crack problems, it
is well-known that setting more collocation points near crack tips is advantageous in
generating high accuracy of the results. Some other sets of collocation points of eqn (8)
have also been tried and they are found to cause insignificant difference from the present
results.
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Table I. Convergence of maximum stress by method A (lJc; = 0,1:5,:" = 1)

(a) alb = I d/a = 3
Present analysis B.F.M.

M K'A K'B M K'A K'B

4 3.02246 2.99350 4 3.01615 3.00564
8 3.02018 2.99247 8 3.01823 2.99917

12 3.02000 2.99246 16 3.01921 2.99571
16 3.02001 2.99240 32 3.01967 2.99395

48 3.01982 2.99336
x (48-32) 3.0201 2.9922

Ling 3.020 2.992

(b) alb = 2 dla = 3
Present analysis RF.M.

M K'A K'B M K'A K'B

4 5.04461 5.04732 4 5.04264 5.05363
8 5.04493 5.04717 8 5.04383 5.05035

12 5.04485 5.04719 16 5.04440 5.04868
16 5.04486 5.04716 32 5.04467 5.04785

48 5.04475 5.04758
ex; (48-32) 5.0449 5.0470

Table 2. Convergence of maximum stress by method A
(l:5c; = 1,1:5,:" = 0)

alb = I d/a = 3
Present analysis B.F.M.

M K, M K,

4 2.82543 4 2.82074
8 2.82456 8 2.82273

12 2.82432 16 2.82386
16 2.82455 32 2.82445

48 2.82464
OCJ (48-32) 2.82503

Ling 2.825

2.2. Numerical results using the singular integral equation ofconventional body force method
Table 1 shows the convergence of stresses at points A and B when alb = 1, dla = 3,

(Je: = 0, (Je; = 1 (Table l(a» and when alb = 2, dla = 3, (Je: = 0, (Je;: = 1 (Table 1(b)) with
increasing collocation number, in comparison with the conventional body force method
using step-function to approximate the unknown function Px(¢), Py(¢). Table 2 also shows
the convergence of stresses at point C when alb = 1, dla = 3, (Je: = 1, (Je; = O. The results
of Ling (1948) are shown in Tables 1 and 2. These tables indicate that the present analysis
has a better convergence rate than the conventional body force method. In order to
investigate how accurately the boundary conditions are satisfied ((In = 0, Tnt = 0), boundary
stresses (In, (Jt, Tnt along the hole when the collocation number M = 16 have been indicated
as shown in Tables 3 and 4. These tables show that the boundary conditions are not satisifed
very well, especially around the point C. It should be noted that the residual stresses are
skew-symmetrically distributed with respect to the point C.

The reason why the boundary conditions cannot be satisfied completely is as follows.
In both method A and the conventional body force method, only the fundamental density
functions nxC¢), ny(¢), namely, the exact densities of the body forces for an isolated elliptical
hole have been used. They are symmetrical to the point C, and, in addition, since nJ¢)
approaches zero when ¢ approaches ±n12, the body force p~(¢) also approaches zero and,
therefore, the residual shear stresses cannot be satisfied in the solution shown by eqns (2)~

(10).
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Table 3. Compliance of the boundary condition by method A
(tr~ = O,tr~ = I)

alb = I, dla = 3, M = 16
8 (deg.) tr, tr" '"

0 3.02001 -0.000317 0.000000
20 2.55390 -0.000333 -0.000345
40 1.37677 -0.000139 -0.000179
60 0.04621 0.000788 0.001175
80 -0.80503 0.002580 0.009009
86 -0.88051 -0.000609 -0.006905
88 -0.90409 -0.000093 -0.013961
90 -0.91981 0.000000 -0.015511
92 -0.92579 0.000093 -0.013961
94 -0.92017 0.000609 -0.006905

100 -0.79335 -0.002580 0.009009
120 0.10783 -0.000788 0.001175
140 1.43530 0.000139 -0.000179
160 2.56053 0.000333 -0.000345
180 2.99240 0.000370 0.000000

Table 4. Compliance of the boundary condition by method A
(tr;' = I, tr~ = 0)

alb = I, d/a = 3, M = 16
8 (deg.) tr, tr" '"

0 -0.33660 0.000646 0.000000
20 -0.04927 0.000666 0.000691
40 0.81904 0.000278 0.000358
60 1.96456 -0.001577 -0.002349
80 2.72493 -0.005158 0.018011
86 2.72493 0.001219 0.013805
88 2.79911 -0.001865 0.027910
90 2.82455 0.000000 0.031079
92 2.83067 0.001865 0.027910
94 2.79846 -0.001219 0.013805

100 2.70069 0.005158 0.018011
120 1.85017 0.001577 -0.002349
140 0.72476 -0.000278 0.000358
160 -0.06917 -0.000666 0.000691
180 -0.32415 -0.000640 0.000000

3. NEW SOLUTION OF SINGULAR INTEGRAL EQUATION OF THE BODY FORCE
METHOD (METHOD B)

3.1. Definition ofnew fundamental density functions
New fundamental density functions for the body forces in the x-direction wi4» and

the ones in the y-direction wy{4» are defined by the following expression (Noda and Matsuo,
1992,1993,1995).

W<\(4)) = n,(4))/cos4>

Wd(4)) = n,(4)) tan 4>

Wd(4)) = n,(4))

W x 4 (4)) = n, (4)) sin 4>

Wyl (4)) = n,(4))/ sin 4>

W'2(4)) = n''(4))

W,-3 (4)) = nv(4)) cot 4>

W\'4 (4)) = n,(4» cos 4>. (11)
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Wx!:

x-symmetric
y-skew-

symmetric

const.

Wx2:
x-skew

symmetric
y-skew- .

symmetric

sin6

Wx3:
x-symmetric
y-symmetric

cos6

WI':
x~skew

symmetric
y-symmetric

const.

Wy2:

x-symmetric
y-symmetric

WI 3:
x~skew

symmetric
y-skew

symmetric

cos6

W.x4:
x-skew

symmetric
y-symmetric

sin6cos6
Fig. 2. New fundamental density functions for circular boundary.

Wy4:

x-symmetric
y-skew-

symmetric

sin6cos6

The fundamental density functions defined by eqn (II) are shown in Fig. 2 for a circular
boundary.

The unknown functions of the body force densities for elliptical holes P:(¢), p~(¢) can
be expressed by a linear combination of the fundamental density functions defined by
eqns (11) and the weight functions Pxl(¢), P\2(¢), ... ,Pr4(¢), as shown in the following
equations.

p~(¢) = p\! (¢)wd (¢) +Px2 (¢)wx2 (¢) +Pd (¢)Wd (¢) +Px4(¢)Wx4(¢)

p~(¢) = Pli (¢)WrI (¢) +Pr2(¢)W1 2 (¢) +Pd (¢)Wd (¢) +Py4(¢)Wr4(¢) (12)

Using the eqns (12), p~(¢), p~(¢) which are defined over °:::; ¢ :::; 2n, can be expressed by
the weight functions Pxl(¢), pd¢), ... , P,4(¢)' These weight functions are symmetric with
respect to the axes ¢ = 0, n12, n, 3n12.

p~(¢) = Pxl (¢) l1c\ I (¢) +Px3 (¢)Wd (¢)

p~(¢) = P12(¢)l1c',2(¢)+P14(¢)Wr4(¢) (13)

3.2. New solution of the singular integral equation of the body force method
Using the expressions in eqns (11 )-(13), the singular integral eqn (1) is reduced to the

following eqns (14) instead of eqn (5)
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+fn K~~'(¢, e){pV2(¢) +Pr4(¢) COS ¢}a sin ¢ d¢ = - «(J"~ cos 2 eo + (J"~ sin2 eo)

- 0/2)[ - {PX] (e)/ cos e+ Pd (e)} + {pde) +p'4(e) cos e}1sin eo cos eo

+f" K~i«¢,e){Pd(¢)!COS¢+Pd(¢)}bcos¢d¢

+ J:n K~/(¢,e){pv2(¢)+P'4(¢)cos¢}asin¢d¢ = ~«(J"~ -(J"~)sineocoseo. (14)

In the present analysis, polynomials have been used to approximate the unknown
functions as continuous function. Now, from the symmetry of the problem, the following
expression can be applied.

1\.1:,7 /1..1:'2

Pd = L antn(¢), PIC = L b"tnC¢)
n=l '1=1

M,:2

Pd = L c"tn(¢), Pr4 = L dnt,,(¢)
n=1 n=1

tn (¢) = cos {2(n-I)¢}.

( 15)

(16)

Using the approximation method mentioned above, we obtain the following system of
linear equations for the determination of the coefficients am b", C'" d". The number of
unknown coefficients is 2M. The collocation points are set as given by eqn (17).

M/2

L (a"A"+b,,Bn+c"C" +d"D,,) = -«(J"~ cos 2
eo+(J"~ sin2 eo)

n=l

lv//2

LCanEn+b"F,,+cnGn+dnHn) = -C(J"~-(J"~)sineocoseo
n=l

An = -(l/2)tnce)cos2eo/cose+ fIT K~;(¢,e)tn(¢)bd¢

Bn = -(l/2)tn(e)cos2eo+rn

K~:(¢,e)tnC¢)bcos¢d¢

c" = -0/2)t"Ce)sin2eo+ fn K~~C¢,e)tn(¢)asin¢d¢

f
2n

D" = -(l/2)tnCe)sin2eocose+ 0 K~~C¢,e)tnC¢)asin¢cos¢d¢

(17)

(18)
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Table 5. Convergence of unknown functions by method B (11";' = 0, 11"~ = \)

alb = l, aid = 1/3
() (deg.) M P" P" Px PY4

0 4 -0.89\4 2.9828 -0.030\ 0.0528
8 -0.8899 2.9787 -0.040\ 0.06\5

\2 -0.8899 2.9787 -0.040\ 0.0615

20 4 -0.8972 2.9875 -0.0276 0.05\7
8 -0.897\ 2.9853 -0.0282 0.0579

\2 -0.897\ 2.9853 -0.0282 0.0579

40 4 -0.9\20 2.9994 -0.0062 0.0489
8 -0.9135 3.0000 -0.0026 0.0498

\2 -0.9135 3.0000 -0.0026 0.0498

60 4 -0.9288 3.0\29 0.0\80 0.0457
8 -0.9288 3.0137 0.0\97 0.04\9

12 -0.9288 3.0137 0.0\97 0.04\9

80 4 -0.9398 3.02\7 0.0338 0.0436
8 -0.9373 3.02\\ 0.03\2 0.0375

\2 -0.9373 3.021\ 0.03\2 0.0375

90 4 -0.9413 3.0229 0.0360 0.0433
8 -0.9384 3.0221 0.0326 0.0370

12 -0.9384 3.022\ 0.0326 0.0369

En = -(1/2)tn({:I)sin8ocos8o/cos8+ fn K~;'(¢,8)tn(¢)bd¢

F" = -(1/2)tn(8)sin8ocos8o+fn K;,,'(¢,8)tn(¢)bcos¢d¢

Gn = -(l/2)tn(8)sin8ocos8o+fn K~!(¢,8)tn(¢)asin¢d¢

Hn = -(1/2)tn(8)sin8ocos8ocos8+ fn K~;(¢,8)t,,(¢)asin¢cos¢d¢. (19)

The stresses at an arbitrary point are represented by a linear combination of the
coefficients an, b", em dnand the influence coefficients corresponding to Am Bm... , H".

Using the numerical solution mentioned above, we will obtain the stress concentration
factors and the stress distribution along the boundaries.

3.3. Numerical results using the new solution of singular integral equation of the body force
method

Tables 5 and 6 show the convergence of unknown functions Px3(¢), Py 2(¢), Pxl(¢),
Py4(¢) along the prospective boundary of circular hole with increasing the collocation
number. The present results have the convergency to the fourth digit when M = 8. Figures
3 and 4 show the variation of the unknown functions in comparison with the results of
conventional body force method, where only two unknown functions pA¢), py(¢) are
approximated by using the stepped functions when M = 12, 24. In the present results four
unknown functions of the body force densities, Px3(¢), Py2(¢), Pxl(¢), Py4(¢) seem to
approximate the continuous density distributions very well because the present results of
M = 8 and M = 12 coincide with each other to the fifth digits. On the other hand, two
unknown functions pA¢), py(¢) do not converge with an increasing number of collocation
points as shown in Figs 3 and 4. The reason is that pA¢), py(¢) cannot represent the actual
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Table 6. Convergence of unknown functions by method B (J~ = 1, (J~ = 0)

bja = I, ajd = 1/3
8 (deg.) M P'- P" P.l

l
Pr 4

0 4 2.7796 -0.8476 0.0704 -0.1267
8 2.7776 -0.8419 0.0764 -0.1394

12 2.7776 -0.8419 0.0764 -0.1394

20 4 2.7894 -0.8564 0.0539 -0.1247
8 2.7893 -0.8534 0.0548 -0.1338

12 2.7893 -0.8534 0.0548 -0.1338

40 4 2.8140 -0.8786 0.0122 -0.1196
8 2.8160 -0.8796 0.0068 -0.1209

12 2.8160 -0.8796 0.0068 -0.1209

60 4 2.8420 -0.9038 0352 -0.1138
8 2.8418 -0.9050 -0.0377 -0.1081

12 2.8418 -0.9050 -0.0377 -0.1082

80 4 2.8603 -0.9203 -0.0661 -0.1100
8 2.8565 -0.9194 -0.0621 -0.1008

12 2.8565 -0.9194 -0.0621 -0.1008

90 4 2.8628 -0.9226 -0.0704 -0.1095
8 2.8584 -0.9212 -0.0652 -0.0998

12 2.8584 -0.9212 -0.0652 -0.0998

Py2 Py

/ ~----3F="'==~'-';;"-------~----------1

'".§ Present analysis (four unknown functions:px3,Py2,Pxl,Py4)
g 2 Stepped function (two unknown functions:px'py)
.z

""'o

Stepped function (M = 24)
/Stepped function (M =12)

/ Py4 11/ Present analysis

~ OF===~=====~==Ai!jW===========1
~ "Pxl

~ PX~__ j /
Il=~~-----""'='~=.-L!~r---;--<===~-~~=j

Px3 c::r-
alb = I
aId = 1/3180160140120604020o 80 100

e (deg.)

Fig. 3. Variation of unknown functions by method B in comparison with the conventional body
force method (J~ = O. (J~ = 1).

density distribution p~(¢), p~¢) enough, especially near () = n/2, because of the fundamental
density functions nA¢), n/¢) approaches zero when () = n/2.

To investigate the satisfaction of the boundary conditions «(Tn = 0, Tnt = 0), the stresses
(T., (it, Tnt along the elliptical boundary have been investigated as shown in Tables 7 and 8.
The values of (i., Tnt which should be 0 along the boundary are less than 10- 5

, even when
M = 8. In the present analysis, therefore, the boundary requirements can be highly satisfied
along the entire boundary by the use of new fundamental functions.

As another example, two ellipsoidal cavities in an infinite body under tension as shown
in Fig. 5 is solved in a similar way using another Green's function, that is, the stress field
at an arbitrary point (r, z) when ring forces act symmetrically on another two points (± p, 0
in an infinite body (Nisitani and Noda, 1984). Table 9 shows the results of stress (io at
points A and B in comparison with the results of Tsuchida et al. (1976) when a/b = I,
(i';' = I, (i';' = O. The method B yields rapidly converging numerical results for the wide
range of a/d. The present results and Tsuchida's results coincide with each other to the
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Fig. 4. Variation of unknown functions by method B in comparison with the conventional body
force method ((5; = I, (5,' = 0).

Table 7. Compliance of the boundary condition by method B ((5; = 1,(5,: = 0)

alb = I, aid = 1/3
o (deg.) Al (5, (5" T",

0 4 3.0188 -9.4x 10- 4 0
8 3.0197 -2.9xlO- 6 0

12 3.0197 ~4.9 x 10- 9 0

40 4 1.3759 8.1 x 10-4 ~ 5.0 X 10-4

8 1.3747 -2.0 x 10-6 1.2 X 10-4

12 1.3747 2.lxlO- 9 ~ 1.3 X 10-'

80 4 -0.8154 ~3.7xlO-4 8.7 x 10- 4

8 -0.8135 -2.4xlO- 7 5.6 x 10- 7

12 -0.8135 I.lxlO- 9 -2.7xlO- 9

90 4 -0.9191 -3.1xlO-4 1.2 x 10-'
8 -0.9188 ~8.6 x 10- 7 3.7xlO- 6

12 -0.9188 -1.3 x 10- 9 6.0 X 10- 9

100 4 -0.7812 - 7.3 x 10- 5 1.0 X 10- 3

8 -0.7829 -3.7 x IO- R 7.0 X 10- 7

12 -0.7829 1.5 x 10- 10 -3.2 X 10- 9

140 4 1.4358 -1.1xlO' -1.3xlO'
8 1.4379 2.4 x 10- 6 2.8 X 10- 6

12 1.4379 -2.5xlO' - 2.9 x 10-'

180 4 2.9929 2.0 x 10 3 0
8 2.9908 5.4 x 10- 6 0

12 2.9908 8.5 x 10-' 0

third significant digit. The results when alb = I, rI r
x = 0, <1~ = I was shown in the previous

paper (Noda and Matsuo, 1995). The magnitude and position of maximum stress of two
ellipsoidal cavities under tension are shown in Table 10 (rI~ = 0, rI;c = 1) and Table 11
(rI,x = 1, <1'; = 0) for various values of a/b.

4. CONCLUSION

In this paper, singular integral equations of the body force method were formulated
by using the stress field of a point force as a fundamental solution. Then, then numerical
solution was considered in the analysis of stress concentration problems,
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Table 8. Compliance of the boundary conditions by method B (a: =1,O"~=0)

bla = I. aid = 1/3
I! (deg.) 1'.-1 0", 0"" T"

.._._----

0 4 -0.9376 -IAxIO ' 0
8 -0.9391 3.7 x 10- 6 0

12 -0.9391 5.8 x 10-' 0

40 4 0.6548 - 1.2 x 10- 3 7.7 x 10 4

8 0.6567 2.5 x 10 " -1.6xlO- 6

12 0.6567 -2.5xI0" 1.6 x 10- 9

80 4 2.7413 5.9 x 10' 1.3x10- 1

8 2.7385 3.1 x 10
,

- 7.3 x 10-
12 2.7384 -1.3xIO' 3.2 x 10

<)

86 4 2.8190 5.9 x 10 4 -1.7xIO
,

8 2.8174 I.lxlO 6 3.8x10- 6

12 2.8174 1.3 x 10 9 -4.6 x 10 <)

88.6 4 2.8264 5A x 10 4 -1.8x10
8 2.8255 1.1 x 10 6 -4.5 X 10- 6

12 2.8255 1.7 x 10- 9 -6.7xlO-<)

90 4 2.8233 5.0xlO- 4 -1.9xl0'
8 2.8228 1.1xlO- 6 4.7 x 10- 6

12 2.8228 1.6 x 10 <) -7.1 x 10 9

94 4 2.7910 3.6 x 10- 4 -1.9x10
8 2.7917 6.8 x 10 -4.lxlO- 6

12 2.7917 7.7xlO- 11i -4.9xl0'

100 4 2.6735 1.3 x 10 4 -1.6xlO '
8 2.6761 5.1 x 10-' -8.8 x 10

,
12 2.6761 - 1.9 x 10 10 3.8 X 10 9

140 4 0.5597 1.6 x 10 1 1.9 X 10- 1

8 0.5567 -3.0 x 10- 6 -3.5xI0 "
12 0.5567 3.0x 10 <) 3A x 10 -9

180 4 -0.8381 -3.0x 10 0
8 -0.8350 -6.7xlO 6 0

12 -0.8350 -1.0 x 10 ' 0

In the conventional body force method, the unknown functions of the body force
densities has been approximated by the products of the fundamental density functions and
weight functions. Here:

(a) the fundamental density function is an exact density of body force to express a single
elliptical hole; and
(b) the weight function is chosen to be a "step function", which takes a constant value
along each segment into which a whole boundary is discretized.

In this paper, to solve the integral equations accurately, the boundary conditions
satisfied by two types of numerical procedure (methods A and B) are examined. The
conclusions are summarized as follows:

(l) In the former method A, the known weight functions were approximated as continuous
functions by using polynomials instead of step functions. The results show that method A
has better convergence rate than the conventional body force method. However, it was
found that this former method cannot completely satisfy the boundary condition along the
boundaries. The reason is that the conventional fundamental density functions cannot
represent real density distribution enough near the apex of elliptical boundary.
(2) In the later method B, eight kinds of fundamental density functions were newly defined
and applied; then, the unknown functions of the body force densities were approximated
by a linear combination of the new fundamental density functions and weight functions.
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Fig. 5. Two ellipsoidal cavities in an infinite body subjected to (J~ and (J': .

Table 9. Results of two spherical cavities in an infinite body under tension
(ajb = I,(J~ = I,(J,:" = 0)

A (i/J = _90°) B (i/J = 90°)
Present Present

aid analysis Tsuchida analysis Tsuchida

0 2.1820 2.182 2.1820 2.182
0.1 2.1817 2.18 2.1818 2.18
0.2 2.1798 2.18 2.1812 2.18
0.3 2.1730 2.17 2.1803 2.18
0.4 2.1572 2.16 2.1795 2.18
0.5 2.1292 2.13 2.1796 2.18
0.6 2.0954 2.09 2.1809 2.18
0.7 2.0939 2.09 2.1840 2.19
0.8 2.2395 2.24 2.1889 2.19
0.9 2.8130 2.1960

Table 10. Results of two ellipsoidal cavities in an infinite body under tension «(J;' = 0, (J,:" = I)

bid 0 1/3 1/2 2/3
alb K,o i/J (deg.) K, i/J (deg.) K, i/J (deg.) K,

1/2 1.4403 0.2 1.4365 0.7 1.4285 2.0 1.4159
1 2.0455 0.3 2.0200 1.2 1.9800 2.4 1.9394
2 3.3130 0.6 3.1515 1.5 3.0269 2.1 2.9492
4 5.8678 0.6 5.1063 1.2 4.9734 1.5 4.8634
8 10.9706 0.5 8.9554 0.8 8.6904 0.8 8.5604

The results show that introducing the new fundamental functions can satisfy the boundary
conditions along the entire boundary. It is found that this latter method yields a smooth
variation ofstresses along the boundary with higher accuracy compared with other methods.
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Table II. Results of two ellipsoidal cavities in an infinite body under tension (tT;.x' = I, tT:'" = 0)
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bid 0 1/3 1/2 2/3
alb K tO '" (deg.) K, '" (deg.) K, '" (deg.) K,

I 2.1819 90.0 2.1799 90.0 2.1795 90.0 2.1827
1/2 2.5373 90.0 2.5369 90.0 2.5366 90.0 2.5368
1/4 2.7404 -90.0 2.7409 -90.0 2.7449 -90.0 2.7611
1/8 2.8221 90.0 2.8210 90.0 2.8213 90.0 2.8214

(3) As an example, the interaction of two ellipsoidal cavities in an infinite body is analyzed.
The results of two spheroidal cavities coincide with Tsuchida's results to the third significant
digit. The exact stress concentration factors are indicated in tables with varying the shape
and space. It is found that the method B yields rapidly converging numerical results for the
wide geometrical range.
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